
36 The Delphi Magazine Issue 69

Under Construction:
DataCLX And dbExpress
by Bob Swart

This month, I’m going to explore
dbExpress, the new cross-

platform database access layer
currently available in Borland
Kylix (on Linux) and which in the
future will also be available in
Borland Delphi 6 (on Windows).

Exit BDE?
Before I start with dbExpress, how-
ever, you should know that the
Borland Database Engine (BDE) is
not available for Kylix. In fact, there
is no BDE for Linux, so this poses a
potential problem for existing BDE
tables in (say) Paradox format. I’ll
cover some BDE migration tech-
niques at the end of this article,
showing how you can move exist-
ing BDE data to dbExpress or
MyBase (MyBase is the personal
XML-based database engine which
is included with Kylix).

What does this mean for the
future of the Borland Database
Engine? Is the BDE dead? Well, not
officially. There has been no
announcement regarding the dis-
missal of the BDE, but at the same
time, I haven’t heard any news of
future BDE updates or enhance-
ments either. Delphi 6 will ship
with both the BDE and dbExpress,
that much is sure. But for
cross-platform database access,
the BDE will be a no-no, and hence
the focus this month on dbExpress
(and moving from the BDE to
dbExpress).

What Is dbExpress?
dbExpress is a cross-platform,
lightweight, fast and open data-
base access architecture. A
dbExpress driver must implement
a number of interfaces to get
metadata, execute SQL queries or a
stored procedure, and return a
unidirectional cursor. We’ll get
back to this in a moment.

The Kylix Component Library is
called CLX (Component Library for

X-platform). And CLX is divided
into four parts: BaseCLX,
VisualCLX, NetCLX and DataCLX. A
question that comes up often is
where exactly dbExpress fits in.
Obviously, dbExpress and
DataCLX are connected. In fact,
that’s exactly what’s happening:
dbExpress is the low-level data-
base access driver and DataCLX is
a set of components that connect
to this driver. Not the visual
data-aware components, mind you
(these are part of VisualCLX), but
the data access components that
we can use to specifically work
with the data (regardless of the dif-
ferences in the underlying data).

As you probably know by now,
Kylix version 1.0 is released in two
editions: Kylix Desktop Developer
and Kylix Server Developer. Kylix
Desktop Developer includes
dbExpress drivers for InterBase
and MySQL; Kylix Server Devel-
oper adds drivers for DB2 and
Oracle 8i. Future native SQL driv-
ers for dbExpress are expected,
perhaps even before the next edi-
tion of Kylix is available (which
should be the Enterprise Studio).

By the way, although the Kylix
CD itself contains InterBase 5.6,
you can find a copy of InterBase 6
on the companion CD. So you’re
free in your choice of InterBase
version on Linux.

Custom dbExpress
And that’s not all, because
dbExpress was created as an open
database architecture, meaning
that anyone can write a dbExpress-
compatible driver for use with
Kylix and future versions of Delphi.
An article about the dbExpress
internals by Ramesh Theivendran,

the architect of dbExpress, was
published on the Borland Commu-
nity website in July of last year.
Although this was just a draft spec-
ification, it made it clear that
anyone can write a driver.

As a practical example, Easysoft
has developed a dbExpress Gate-
way for ODBC, which can be used
to connect to UNIX ODBC, and, via
its ODBC-ODBC Bridge, even to a
remote Microsoft SQL Server,
Access or other Windows ODBC
driver.

Components
If you start Kylix and take a look at
the Component Palette, you’ll
notice a tab called dbExpress and
no tab called DataCLX. This is a mis-
take in my view; the tab should
have been called DataCLX, since the
components are part of CLX, and
only wrap the dbExpress function-
ality. Using Kylix Server
Developer, the dbExpress tab
contains seven components: TSQL-
Connection, TSQLDataSet, TSQLQuery,
TSQLStoredProcedure, TSQLTable,
TSQLMonitor and the last one is
TSQLClientDataSet.

TSQLConnection
The TSQLConnection component is
literally the connection between
the dbExpress drivers and the
other DataCLX components. If you
drop this component onto a Kylix
form or data module, you will see
only 12 properties. The one that’s
probably most used is the
ConnectionName property, which
can be assigned with one of the
values from the combobox. On my
Kylix Server installation, I have the

➤ Figure 1

May 2001 The Delphi Magazine 37

choice of DB2Connection, IBLocal,
MySQLConnection and OracleConn-
ection. If you select IBLocal, then
the DriverName property gets the
value INTERBASE, the GetDriverFunc
property gets the value getSQL-
DriverINTERBASE, the LibraryName
property gets the value libsqlib.
so.1 and the Vendorlib property
gets the value libgds.so.0: all auto-
matically, based on the value
IBLocal for the ConnectionName.

You can open the Params string-
list editor to edit the values of the
parameters. These are also auto-
matically filled in, by the way,
when you select a value for the
ConnectionName property. If you do
not want this to happen, for exam-
ple when you are writing some
non-visual code to access data-
bases and you want to provide
your own parameter values, then
you can set the LoadParamsOn-
Connection to False.

If you right-click on the TSQLConn-
ection component, you will see the
connection settings for the four
connection names. As you can see
in Figure 2, the Database is set to
database.gdb (by default). You
need to set that to an actual
InterBase database, such as the
employee.gbd which on my
PC is at /usr/interbase/examples/
employee.gdb.

Once you have everything set
right, you can set the Connected
property to True (and either get an
error message if the database
cannot be found, or see the prop-
erty get the value True indeed for
success).

TSQLDataSet
Once you have a connected TSQL-
Connection component, you can
use any of the other DataCLX com-
ponents, such as the TSQLDataSet,
which is the most ‘general’ of these
components. Always start by set-
ting the SQLConnection property of
this component to (one of) the
available TSQLConnection compo-
nent(s). The TSQLQuery, TSQLSto-
redProc and TSQLTable components
can be seen as special instant-
iations of the TSQLDataSet compo-
nent. In fact, this reminds me a lot
of ADOExpress, in which the
TADODataSet component is the
‘mother’ of the TADOQuery, TADO-
DataSet and TADOTable compo-
nents. And both the Delphi 5
ADOExpress and Kylix (and future
Delphi) dbExpress TxxxDataSet
‘core’ components share the
CommandType and CommandText prop-
erties, with which you can deter-
mine the sub-type of the
component. If you set the value of
the CommandType property to
ctQuery, then the CommandText prop-
erty is interpreted as an SQL query.

If you set the CommandType to
ctStoredProc, then the CommandText
specifies the name of the stored
procedure. Finally, if you set
CommandType to ctTable, then Com-
mandText contains the names of the
individual tables.

By the way, although they are
hardly necessary (the TSQLDataSet
component is flexible enough), I
see the main purpose of the
TSQLQuery, TSQLStoredProc and
TSQLTable components being to
help with migrating existing BDE
code to dbExpress.

In our case, using the general
TSQLDataSet component, we can
set the CommandType to ctTable, and
the CommandText to customer to
select the customer table. If you
set the Activeproperty to True, you
get live data at design-time, just as
we’ve been used to with Delphi
(and if you set the LoginPrompt
property of the SQLConnection com-
ponent to False, you don’t even see
the login dialog). Nothing special,
nothing different. Yet.

Unidirectional?
We can now move to the Data Con-
trols tab of the component pal-
ette, and use some of these to
display the data we receive from
the active TSQLDataSet component.
Note that we cannot use all of
these components right now with-
out some special considerations.
This is the place where the biggest
difference between the BDE and
the dbExpress architecture is
present. TSQLDataSet (and the
derived TSQLQuery, TSQLStoredProc
and TSQLTable) returns a unidirec-
tional cursor. Meaning that you
can move forwards, but not back-
wards. Which isn’t useful with a
TDBGrid (we can only see one
record at a time!), and watch out
when using a TDBNavigator too, as
clicking on the Backor Firstbutton
will raise an exception!

So why a unidirectional cursor?
Well, the obvious answer is speed.
The BDE has never been our best
friend (let’s call it a good friend, or
a friendly relative), but it has
helped us with our small and
simple database needs. Unfortu-
nately, the BDE footprint and over-
head hasn’t been small. And BDE

➤ Figure 2

38 The Delphi Magazine Issue 69

tables have never been known for
their amazing speed. And that’s an
area where Borland wanted to
show some real improvements.
The new dbExpress architecture is
designed with speed in mind. And
hence unidirectional cursors as a
result set, with no overhead for
buffering data or managing
metadata.

A unidirectional cursor is espe-
cially useful when you really only
need to see the results once, or
need to walk through your result
set from start to finish (again
once), for example in a while not
eof loop, processing the results of
a query or stored procedure.
Real-world situations where this is
useful include reporting, and web
server applications that produce
dynamic web pages as output.

However, you will quickly realise
that, in a GUI driven environment,
using visual data-aware controls,
the user will often want to go back
one record. So you need to some-
how cache these records in order
to be able to show them in a grid
and to browse backwards as well
as forwards. That’s where the
TClientDataSet comes in, which
you may remember from my past
MIDAS-related articles (or the

recent MIDAS MasterClasses I
gave, organised by the UK Borland
User Group). It’s entirely possible
to use a TDataSetProvider (from
the Data Access tab of the Kylix
component palette) to hook up
with the TSQLDataSet component,
and then use a TClientDataSet to
obtain its records from this
TDataSetProvider. The result is a
ClientDataSet that gets its records
(once) from a unidirectional
source: the SQLDataSet. The
DataSetProvider is only used as a
local transportation means. This
combination works very well, and
in fact ended up as a single compo-
nent in its own right: the
TSQLClientDataSet component.

TSQLClientDataSet
The TSQLClientDataSet component
combines the speed and light
weight of the new dbExpress archi-
tecture with the caching and speed
abilities of the well-known TClient-

DataSet component. And there is
another reason why we want to
use the TSQLClientDataSet at times:
the unidirectional TSQLDataSet
(and derived components) have
an additional limitation in that
they cannot be used to update the
data in the dataset. For that, you
have to use a TClientDataSet com-
ponent (like the
TSQLClientDataSet). How can this
be done, you may ask. Well, as a
regular ClientDataSet, all the
changes that are made locally are
cached inside the
TSQLClientDataSet component.
And all the changes are sent back
(resolved) to the actual database
(via the dbExpress driver in this
case) by calling the ApplyUpdates
method also inherited from
TClientDataSet. The ApplyUpdates
method call will use the provider
to send so-called delta packets to
the database server. Something a
lone TSQLDataSet component isn’t
capable of.

Isn’t it a nuisance to have to call
ApplyUpdates? Suppose you forget
to call it in your application. Or the
end-user just changes a lot of data,
but is surprised that other users
don’t see his changes because he
never calls the ApplyUpdates
method. At first sight, this
ClientDataSet layer seems only to
add potential confusion. But the
confusion can be solved by making
sure the ApplyUpdates method is
called on a frequent basis. In fact,
you can easily use the AfterPost
event of the TSQLClientDataSet
component to call the Apply-
Updates method, which will make
sure that, after every (local) post
to the ClientDataSet, the data is
immediately also sent as an update
packet to the database server. And
in cases where you don’t want to

var
Posts: Integer = 0;

procedure TForm1.SQLClientDataSet1AfterPost(DataSet: TDataSet);
const
MaxPosts = 7;

begin
Inc(Posts);
if Posts > MaxPosts then begin
(DataSet AS TSQLClientDataSet).ApplyUpdates(-1);
Posts := 0

end
end;

➤ Listing 1

{$APPTYPE CONSOLE}
program dbAlias;
uses
Classes, SysUtils, DB, DBTables, Provider, DBClient;

var
i: Integer;
TableNames: TStringList;
Table: TTable;
DataSetProvider: TDataSetProvider;
ClientDataSet: TClientDataSet;

begin
TableNames := TStringList.Create;
with TSession.Create(nil) do
try
AutoSessionName := True;
GetTableNames(ParamStr(1), '', True, False, TableNames);

finally
Free

end {TSession};
Table := TTable.Create(nil);
DataSetProvider := TDataSetProvider.Create(nil);
ClientDataSet := TClientDataSet.Create(nil);
try
Table.DatabaseName := ParamStr(1);
for i:=0 to Pred(TableNames.Count) do begin
writeln(Table.TableName);
Table.TableName := TableNames[i];
Table.Open;
DataSetProvider.DataSet := Table;
ClientDataSet.SetProvider(DataSetProvider);
ClientDataSet.Open;
ClientDataSet.SaveToFile(ChangeFileExt(Table.TableName,'.xml'));
ClientDataSet.Close;
Table.Close

end
finally
Table.Free

end
end.

➤ Listing 2

40 The Delphi Magazine Issue 69

do that, because it may take addi-
tional time to make that call, you
can always ‘save’ your posts,
increase an internal counter, and
only call ApplyUpdates when the
counter reaches a certain number
of posts (after which you also need
to reset the counter, of course).
The latter can be implemented as
shown in Listing 1 (which only
compiles with Kylix, by the way,
and not with Delphi 5).

Since the TSQLClientDataSet
component is actually derived
from the TClientDataSet, we could
have cast the DataSet parameter to
a TClientDataSet in order to make
the code a bit more general, but I’m
sure you get the idea. Note that the
TSQLDataSet (or derived) compo-
nent doesn’t have the AfterPost
event. Obviously, that’s because
these components cannot post,
but return a unidirectional read-
only cursor.

TClientDataSet
Let’s return to the ‘normal’
TClientDataSet now, and see if it’s
still the same little powerhouse
we’ve known from Delphi 5. Yes, it
is, and its internal data format is
compatible with its Windows coun-
terpart (it would have surprised
me if that wasn’t the case, but it’s
good to confirm). This means that
we can use a TClientDataSet on
either Windows or Linux and save
its contents to a binary .cds or
readable .xml format, and then
send that file to the other platform,
and load it in another
TClientDataSet component. This is
the cornerstone of not only
multi-tier but multi-tier over
cross-platform applications! The
only thing that’s stopping us is the
fact that the current TDataSet-
Provider component in Kylix can
only handle local datasets (ie local
database servers) and cannot yet
make any remote database connec-
tions using any of the TxxxConn-
ection components we’ve used in
Delphi 5. This will all have to wait
until the Kylix Enterprise Studio
ships, but why let that stop us? In
the meantime, we can still use any-
thing from FTP to a TCP/IP socket
connection to send a saved
ClientDataSet file from one plat-

form to another, load it in again,
and use it (or resolve the changes
to a database server).

Migrating From BDE
In fact, the TClientDataSet compo-
nent in Kylix, as well as Delphi 5,
means a quick and easy way to
migrate local database tables
(such as, indeed, BDE tables in Par-
adox or dBASE format). This is the
first way in which you can migrate
from the BDE to dbExpress: migrat-
ing data. The second way is by
migrating the application as well (a
future topic).

To continue now with the way to
migrate data from the BDE to a
native ClientDataSet format, con-
sider the code in Listing 2 for a new
utility called dbAlias that I’ve writ-
ten, which will convert all the
tables from a given alias (passed
on the command-line passed) into
XML files.

This is a quick-and-dirty way to
convert your existing BDE aliases
containing Paradox and dBASE
files to XML, after which you can
put these files on a Linux box
(using FTP, a network connection
or even a floppy disk) and load
them in Kylix using a TClient-
DataSet component. Obviously,
this code only compiles in Delphi 5,
and not in Kylix.

Follow-Up
If you want to know more about
dbExpress and the internals of
dbExpress, then wait just another
month for an article by Guy
Smith-Ferrier in your favourite
Delphi magazine (that’s this one,
obviously), where he will follow up
with lots more interesting details
about this new cross-platform

database access layer called
dbExpress.

Next Time...
In the meantime, I’ll be working on
an exploration of NetCLX, or
rather: WebBroker support in
Kylix. The Server Developer edi-
tion, that is, since the WebBroker
components are not in the Desktop
Developer edition.

Anyway, we will explore Web-
Broker, and see how we can write
Apache web server applications
for Linux using Kylix (which might
again show some glimpses of the
future that Delphi 6 might bring us
regarding the forthcoming sup-
port for Apache on Windows). And
of course we’ll be using some
dbExpress unidirectional datasets
(which, as I stated in this article,
are perfectly suited for use in a
web server application).

All this and more next month, so
stay tuned...

Bob Swart (aka Dr.Bob, visit www.
drbob42.com) is a professional
IT-consultant for the Everest
Kylix/Delphi OplossingsCentrum
in Eindhoven, The Netherlands,
and a freelance technical author.

	Exit BDE?
	What Is dbExpress?
	Custom dbExpress
	Components
	TSQLConnection
	TSQLDataSet
	Unidirectional?
	TSQLClientDataSet
	TClientDataSet
	Migrating From BDE
	Follow-Up
	Next Time...

